Computation of the dipole moments of proteins.

نویسنده

  • J Antosiewicz
چکیده

A simple and computationally feasible procedure for the calculation of net charges and dipole moments of proteins at arbitrary pH and salt conditions is described. The method is intended to provide data that may be compared to the results of transient electric dichroism experiments on protein solutions. The procedure consists of three major steps: (i) calculation of self energies and interaction energies for ionizable groups in the protein by using the finite-difference Poisson-Boltzmann method, (ii) determination of the position of the center of diffusion (to which the calculated dipole moment refers) and the extinction coefficient tensor for the protein, and (iii) generation of the equilibrium distribution of protonation states of the protein by a Monte Carlo procedure, from which mean and root-mean-square dipole moments and optical anisotropies are calculated. The procedure is applied to 12 proteins. It is shown that it gives hydrodynamic and electrical parameters for proteins in good agreement with experimental data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی اثر تزویج متقابل بر مشخصات تشعشعی یک آرایه آنتن مسطح محدود شامل پچ های مستطیلی

In this paper a novel method for computing the radiation pattern and also the input impedance of a planar rectangular micro-strip antenna array with consideration of mutual coupling and mutual impedance is presented. Each two triangles with a common edge make an Edge element or RWG. Any such edge element is considered as an infinitesimal dipole. The electrical currents over each dipole can be c...

متن کامل

Microscopic Parameters in the Excited State of Toluene and Some of Its Haloderavatives

The Ultraviolet-visible (UV) spectra of toluene, ortho-bromo and para-bromo toluene in different solvents have been studied. The electric dipole moments and polarizabilities in the molecular excited electronic states were determined. It was found that the electric dipole moments for the excited states (µ*) and the ground states (µ) of these compounds are equal, and the change in dipole moment i...

متن کامل

A theoretical study of dipole moments, energy levels and structural parameters in the Oxymetazoline drug as a nano carrier based on fullerene with changing substitution

Oxymetazoline is a decongestant. It works by constricting (shrinking) blood vessels (veins and arteries) in your body. The nasal formulation acts directly on the blood vessels in your nasal tissues. Constriction of the blood vessels in your nose and sinuses leads to drainage of these areas and a decrease in congestion. Oxymetazoline is an adrenomimetic that nonselectively agonizes α1...

متن کامل

Initial study of the effect of substrates on Tetrahydrozoline and its nano-constituent drugs

In this paper, the effect of halogen compounds on tetrahedrozoline with nanosized fullerene was investigated. First, the structures of Tetrahydrozoline on a fully vectorized nanoclay were optimized with halogen compounds on carbon 69 (R-X: X = F, Cl, Br; R = C60-Tetrahydrozoline-C69-). Then orbital calculations were performed using NBO technique, and structural parameters and bipolar moments of...

متن کامل

Computational studies of planar, tubular and conical forms of silicon nanostructures

Density functional theory (DFT) calculations were performed to investigate the properties of planar, tubular and conical forms of silicon nanostructures. The evaluated parameters including averaged bond lengths, binding energies, gap energies and dipole moments were then evaluated for the optimized models of study. The results indicated that the bond lengths between silicon atoms are different ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 69 4  شماره 

صفحات  -

تاریخ انتشار 1995